Quasimultipliers of Operator Spaces
نویسندگان
چکیده
We use the injective envelope to study quasimultipliers of operator spaces. We prove that all representable operator algebra products that an operator space can be endowed with are induced by quasimultipliers. We obtain generalizations of the Banach-Stone theorem.
منابع مشابه
The Libera operator on Dirichlet spaces
In this paper, we consider the boundedness of the Libera operator on Dirichlet spaces in terms of the Schur test. Moreover, we get its point spectrum and norm.
متن کاملOn some fixed points properties and convergence theorems for a Banach operator in hyperbolic spaces
In this paper, we prove some fixed points properties and demiclosedness principle for a Banach operator in uniformly convex hyperbolic spaces. We further propose an iterative scheme for approximating a fixed point of a Banach operator and establish some strong and $Delta$-convergence theorems for such operator in the frame work of uniformly convex hyperbolic spaces. The results obtained in this...
متن کاملA Hybrid Proximal Point Algorithm for Resolvent operator in Banach Spaces
Equilibrium problems have many uses in optimization theory and convex analysis and which is why different methods are presented for solving equilibrium problems in different spaces, such as Hilbert spaces and Banach spaces. The purpose of this paper is to provide a method for obtaining a solution to the equilibrium problem in Banach spaces. In fact, we consider a hybrid proximal point algorithm...
متن کاملCategories isomorphic to the category of $L$-fuzzy closure system spaces
In this paper, new definitions of $L$-fuzzy closure operator, $L$-fuzzy interior operator, $L$-fuzzy remote neighborhood system, $L$-fuzzy neighborhood system and $L$-fuzzy quasi-coincident neighborhood system are proposed. It is proved that the category of $L$-fuzzy closure spaces, the category of $L$-fuzzy interior spaces, the category of $L$-fuzzy remote neighborhood spaces, the category of ...
متن کاملBilinear Fourier integral operator and its boundedness
We consider the bilinear Fourier integral operatorS(f, g)(x) =ZRdZRdei1(x,)ei2(x,)(x, , ) ˆ f()ˆg()d d,on modulation spaces. Our aim is to indicate this operator is well defined onS(Rd) and shall show the relationship between the bilinear operator and BFIO onmodulation spaces.
متن کامل